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Abstract

This document describes the ability of various types of surface topography measuring instruments to
determine the radius of curvature if the surface is expected to have a spherical figure.  These abilities are
classified as limitations of radius measurement (“vertical” or dynamic range) and accuracy of radius
measurement.  The discussion is limited to a two-dimensional representation of the surface, also known as a
surface profile.
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Introduction

This topic applies to any kind of surface profiler, but especially to scanning profilers such as the long trace
profiler (LTP). Methods for measuring the RoC of a surface are discussed in Malacara1.  Deducing the radius
of curvature from the surface topography acquired from phase shift profilers has been addressed1,2, and
nulling methods exist for getting an accurate number for the radius of curvature3,4.  A scanning profile is
here meant as a profiler with a constant velocity scanning carriage or probe motion, rather than a series of
step-and-repeat stationary measurements. The LTP is useful for measuring optical surfaces whose figure
(L > 10 mm) is in a spatial domain difficult for other instruments to accurately measure. One attribute that is
often used as a single-number description of the surface is its radius of curvature (RoC).  The RoC has a
value R which is the distance from a purely spherical surface to the center of the sphere.  In the case of a
single line profile measurement, R is the radius of a circle.

Instruments have been made exclusively for accurately measuring relatively short RoC1,4.  Perhaps the
simplest of these uses a spherometer, which interprets the RoC as a sag of the surface along a chord of
length L on the spherical surface.  For the case of R >> L >> sag,
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This is a useful way to check for first-order errors in the calculation of R when a surface height profile is
given over some surface length L.



Short RoC limitation and accuracy

For a spherical mirror with radius of curvature R and a slope-measuring instrument with a maximum slope
measurement range of φmax , the longest profile that can be measured is

L    =    R  max ⋅ φ max  . (2)

If the spatial sampling interval is dx, then the maximum number of data points that can be taken for a
measurement scan is
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For typical LTP parameters of φmax = 0.01 and dx = 0.001m, Nmax = R[m] · 0.01 / (0.001m)  =  10 R[m] /m.  In
other words, the LTP can measure at most 10 data points on a mirror with R = 1m.

Error from jitter in high-curvature surfaces

In general, accuracy in determining deviation from a short RoC best-fit circle is limited by lateral sampling
interval uncertainty (jitter) as shown in Figure 2.1.  For a sampling interval of dx with a position precision of
∆x, the maximum peak-to-valley height variation ∆hpv will occur where the slope is greatest.  If a perfectly
spherical surface is approximated as a normalized parabola (vertex at the origin and no residual piston or tilt),
then the ideal profile will be
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and the maximum discrepancy will be at L/2 (the edge of the mirror) where the slope is greatest.  The peak-to-
valley variation there will be

∆ ∆ ∆h    =    
1

2 R
(2 x  x)   =    

L
2 R

  xpv L/ 2 
 .  (5)

For height-measuring profile scanning instruments which scan the surface with speed v, total jitter is the
sum of spatial uncertainty (where the probe is on the surface) and temporal uncertainty (when the data is
taken from the probe).  Thus the short RoC accuracy is limited by the error

∆ ∆ ∆h    =    
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 ,  (6)

where ∆t is the precision of knowing exactly when the data was acquired and can have a value between the
data acquisition’s sampling clock interval and dx / v.  In this case ∆hpv is the peak-to-valley height variation
after the best-fit sphere would be removed from any perfectly spherical surface measurement.

For slope-measuring instruments the ideal profile is the x derivative of the parabolic height profile in
Equation (3):



s (x)   =    
x
R  , (7)

and the slope change magnitude ∆s pv between adjacent samples is
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 .  (8)

This error will vary only with position uncertainly ∆x.  For scanning instruments
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For a sporadic distribution of jitter (every 1 out of  N samples) on an otherwise perfect surface, the overall
root-mean-square (rms) slope variation is
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Therefore,
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An example for a scanning profiler

As a case in point, measurements of a spherical mirror (R = 11m) were made with an LTP that was using a
line-scan camera not suited for precision time-domain image capturing.  The measurements were out-of-
specification and contained sparse impulses (about 1 in 25 data points). The observed impulses were not
repeatable and in slope instead of height, indicating that these impulses could be from variations in the
camera’s image capture timing.  Although ∆x was 0.0005 mm, v·∆t was about 0.2 mm, as seen from intensity
patterns during the conversion to slope.  If the temporal uncertainty were insignificant, then we would
expect errors from spatial uncertainty in the order of

∆ ∆ ∆s    =    s    =    
1
R

  x   =    0.045 radpv rms µ .  (12)

Figure 1.   True parabolic surface (bold curve) and surface profile with two instances of jitter (light
segments).



If the temporal jitter component were taken into account, however, the expected error becomes

∆ ∆ ∆s   =    
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   =   18.1 µrad.  (13)

and
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   =   3.6 µrad. (14)

Actual LTP measurements using this camera resulted in slope errors of between 2.5 and 4.5 µrad rms, very
close to the expected error.  After measuring the same mirror with a more trustworthy camera, resulting slope
errors were between 0.4 and 0.7 µrad;  these variations are mostly from limitations of the metrology
environment.

Long RoC limitation and accuracy

There is no inherent limitation on largest RoC measurements, but the largest practical RoC should be
determined for any particular instrument and its environment.

In any instrument, RoC accuracy reaches its limit when height measurement variations are about equal to the
spherical sag.  Figure 2 shows the variables from a surface measurement which introduce error into the
calculation for R.  We differentiate Equation (1) to get
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and from Figure 2 we see that ∆sag = 2 ∆h.  Using Equation (1) again,
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or
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Figure 2.   Radius calculation error from slope measurement error.  ∆sag = sag2 − sag1.



Examples for an interferometer

Consider a typical phase shift interferometry microscope (PSIM), for which ∆h = 1.0e-9 m and L = 1.0e-3 m.
The limiting accuracy for measuring  a surface with R = 1 m will be ∆R = 16 mm.

For a typical large-aperture phase shift interferometer, ∆h = 30e-9 m and L = 0.150 m.  The limiting accuracy
for measuring a surface with R = 100 m will be ∆R = 0.2 m;  with R = 1000 m will be ∆R = 20 m.

Example for an LTP

For a slope-measuring instrument the variation is expressed as slope:  ∆h = dL ∆s, where dL is the spatial
period with the greatest ∆h.  Then

∆ ∆R   =    
16 R

L
 dL s

2

2
 . (18)

As an example for the LTP, if the instrument has an rms slope accuracy of 0.354 µrad, then approximately ∆s
= 1.0 µrad pv.  A typically worst case value for dL is about 156 mm.  For a mirror with length L = 0.5 m,

∆R   =    
16 R

0.25 m
 (0.156 m) (1e - 6)   =    10e - 6 R

2

2
2

 . (19)

Then, for R = 10 m, ∆R = 0.001 m ;
for R = 100 m, ∆R = 0.100 m;
for R = 1000 m, ∆R = 10 m.



Conclusion

Two limits for measuring radius of curvature of an optical surface on profiling instruments have been
discussed, and calculation examples have been given in order to clarify the argument for the short RoC and
long RoC limits.

It should be pointed out that instrumental resolution is not the limiting factor, nor does repeatability have
anything to do with radius calculation of an acquired surface contour or profile.  The accuracy in
determining RoC is a function of both instrumental accuracy and the degree to which the surface is a perfect
sphere within the field of view or instrumental aperture L.  For scanning profilers, temporal jitter degrades
the instrumental accuracy which reduces the accuracy of measuring the RoC.
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